Curvatures of homogeneous Randers spaces

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Some Examples of Randers Spaces

A Riemannian almost product structure on a manifold induces on a submanifold of codimension 1 a structure generalizing the paracontact structures and containing a Riemannain metric and an one form . We show that the pair consisting of this Riemannian metric and one form defines a strongly convex Randers metric on submanifold. We establish some properties of this Randers metric and we provide so...

متن کامل

Vanishing S-curvature of Randers spaces

We give a necessary and sufficient condition on a Randers space for the existence of a measure for which Shen’s S-curvature vanishes everywhere. Moreover, such a measure coincides with the Busemann-Hausdorff measure up to a constant multiplication.

متن کامل

Frames and Homogeneous Spaces

Let be a locally compact non?abelian group and be a compact subgroup of also let be a ?invariant measure on the homogeneous space . In this article, we extend the linear operator as a bounded surjective linear operator for all ?spaces with . As an application of this extension, we show that each frame for determines a frame for and each frame for arises from a frame in via...

متن کامل

Localization operators on homogeneous spaces

Let $G$ be a locally compact group, $H$ be a compact subgroup of $G$ and $varpi$ be a representation of the homogeneous space $G/H$ on a Hilbert space $mathcal H$. For $psi in L^p(G/H), 1leq p leqinfty$, and an admissible wavelet $zeta$ for $varpi$, we define the localization operator $L_{psi,zeta} $ on $mathcal H$ and we show that it is a bounded operator. Moreover, we prove that the localizat...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Advances in Mathematics

سال: 2013

ISSN: 0001-8708

DOI: 10.1016/j.aim.2013.02.002